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Abstract

Upward mixed convection of air in a long, vertical tube with uniform wall heat flux has been studied numerically for

Re ¼ 1000, Re ¼ 1500 and Gr6 108 using a low Reynolds number k–e model. The results for the fully developed region

identify two critical Grashof numbers for each Reynolds number, which correspond to laminar–turbulent transition

and relaminarization of the flow. They also distinguish the Re–Gr combinations that result in a pressure decrease over

the tube length from those resulting in a pressure increase. A correlation expressing the fully developed Nusselt number

in terms of the Grashof and Reynolds numbers is proposed. It is valid for laminar and turbulent flows in the range

10006Re6 1500, Gr6 5� 107.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Mixed convection in ducts occurs in many installa-

tions such as nuclear reactors, boilers, solar collectors

and heat exchangers. It is therefore being studied ex-

tensively. An early article by Eckert and Diaguila [1]

analyzed simultaneous free and forced convection in a

short vertical tube. In 1989 Jackson et al. [2] presented a

review of experimental and theoretical studies on mixed

convection in vertical tubes. Some more recent publi-

cations are referred to in the present article.

Studies of heated ascending laminar flow in vertical

and inclined tubes with Re < 2000 indicate that the

Nusselt number for mixed convection, NuM, is larger

than the corresponding value for forced convection, NuF
[2–5]. On the other hand, for heated descending laminar

flow with Re < 2000, NuM is smaller than NuF [2,4].

When the flow is turbulent the relationship between NuM
and NuF is quite different [2,6–8]. Thus, for vertical
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tubes, when forced and free convection are in the same

direction NuM is smaller than the corresponding NuF
if the heating is weak and the mass flow rate relatively

high (low values of the Richardson number and the

buoyancy parameter). For high values of the Richard-

son number and the buoyancy parameter, NuM is larger

than NuF. On the other hand, when forced and free

convection are in opposite directions, NuM is always

larger than NuF. For Re > 2000 relaminarization can

occur and for these conditions NuM can be less than NuF
[6,9]. This complicated behavior of NuM explains the

lack of definitive information on this subject in heat

transfer handbooks and textbooks. A further compli-

cation arises from the difficulty of deciding whether a

given flow (defined by its Prandtl, Reynolds and Gras-

hof numbers or by the dimensional quantities appearing

in their expressions) is laminar or turbulent. Therefore,

it is quite difficult to calculate the heat transfer coeffi-

cient for mixed convection flows.

Numerical studies of mixed convection in tubes with

Re > 2000 have been carried out using different tur-

bulent models [6,9,10] and have been successful in

predicting the experimentally observed laminarization

effects of the buoyancy force. On the other hand, all

numerical studies for Re < 2000 have used the laminar
ed.
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Nomenclature

Bo buoyancy parameter 8· 104 GrRe�3:425 Pr�0:8

Cp specific heat

D internal tube diameter

G turbulent production

g acceleration of gravity

Gr Grashof number gbD4qw=km2

I turbulent intensity

k turbulent kinetic energy

L tube length

n normal to the wall

Nu Nusselt number qwD=kðTw–TBÞ
p time averaged pressure

Pr Prandtl number lCp=k
qw uniform heat flux at the solid–fluid interface

r radial coordinate

Re Reynolds number U0D=m
T , t time averaged and fluctuating temperature

U , u time averaged and fluctuating velocity

Z axial coordinate

Greek symbols

b volumetric expansion coefficient

Dp pressure difference between the tube inlet

and outlet

e dissipation of turbulent kinetic energy

h tangential coordinate

k thermal conductivity

l, m dynamic, kinematic viscosity

q density

Subscripts

B bulk

F forced convection

i, j tensor index

L outlet conditions

M mixed convection

0 inlet condition

w wall

r, z, h radial, axial, tangential direction
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equations [3–5]. Nevertheless, experimental evidence

compiled by Metais and Eckert [11] indicates that

mixed convection in tubes can be turbulent for Rey-

nolds numbers as low as 1000. Therefore, the laminar

model is of limited practical interest since it can only

handle the simplest flow conditions. In view of these

observations, it is preferable to use turbulent models

with a proven capability of predicting laminar flow

fields for the analysis of convection heat transfer. The

low Reynolds number k–e models are among the pri-

mary candidates for such analyses. Indeed, Jones and

Launder [12] have shown that in some cases turbulent

solutions for such a model do not exist for accelerating

flows. They state, ‘‘if one starts the predictions with an

initially turbulent boundary layer and then applies the

acceleration, the turbulence gradually decays away and

the mean velocity profile collapses to that appropriate

to laminar flow’’. A slightly different version of this

model has in fact been used [6] to study developing

mixed convection for Re ¼ 5000, Pr ¼ 0:7 and different

Grashof numbers. However, as far as we can ascertain,

such a model has never been used for mixed convection

with Re < 2000.

In view of this situation, our research which has

previously focused on laminar mixed convection

[5,13,14], presently uses the Launder and Sharma low

Reynolds number k–e model [15] to study ascending

mixed convection with Re < 2000. The methodology

and objectives are similar to those of some recent nu-

merical studies of confined forced flows with strong

heating [16,17]. Earlier [18], we discussed flow reversal
patterns for upward mixed convection in a vertical tube

with Pr ¼ 0:7, Re ¼ 1000 and three Grashof numbers.

These fully developed fields were all laminar. In the

present article both laminar and turbulent fully devel-

oped fields are considered. Pressure, temperature and

velocity distributions for Pr ¼ 0:7, Re ¼ 1000 and

Re ¼ 1500 over a wide range of Grashof numbers

(Gr6 108) are presented. The specific aims of this paper

are:

• To establish the transition conditions between lami-

nar and turbulent conditions in terms of critical

Grashof numbers for each Reynolds number.

• To investigate the relationship between different

Re–Gr combinations and the pressure difference be-

tween the tube inlet and outlet.

• To obtain a correlation of the Nusselt number in

terms of the Grashof and Reynolds numbers, valid

for both laminar and turbulent flows.
2. Mathematical formulation and numerical procedure

We consider upward flow in a long vertical tube with

uniform wall heat flux at the fluid–solid interface. The

fluid properties are assumed constant except for the

density in the body force, which varies linearly with

temperature. Dissipation and pressure work are ne-

glected as in all studies cited earlier. Therefore, the di-

mensional equations for steady state mean conditions

are
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In cylindrical coordinates:

X1 ¼ r; X2 ¼ h; X3 ¼ Z ð4aÞ

For Z positive in the flow direction,

g1 ¼ g2 ¼ 0 and g3 ¼ �g ð4bÞ

Turbulence is modeled with the Launder and Sharma

[15] low Reynolds number k–e model which gives accu-

rate predictions for intermediate Reynolds numbers and

for boundary layers with adverse pressure gradients [19].

It has been used successfully to model turbulent mixed

convection for ReP 2100 [6] and is expressed by the

following relations:
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It should be noted that no assumption of symmetry is

introduced (field variables vary with all three space

coordinates). These equations have been presented in

cylindrical coordinates with the boundary layer approx-

imation [6] and for fully developed flow [10]. The present

study does not use either of these simplifications.
The boundary conditions areas follows:

At the tube entrance ðZ ¼ 0Þ : Uz ¼ U0; Uh ¼ Ur ¼ 0;

T ¼ T0; I ¼ I0 ð8aÞ

Since the adopted model incorporates the assumption

of turbulence isotropy, the corresponding turbulent

kinetic energy is k0 ¼ 1:5ðI0U0Þ2 ð8bÞ

At the tube outlet ðZ¼ LÞ : All axial derivatives are zero

ð9Þ

At the fluid–solid interface ðr ¼ D=2Þ :

Ui ¼ 0; k ¼ e ¼ 0; qw ¼ �k
oT
on

ð10Þ

This set of coupled non-linear differential equations was

discretized with the control volume technique. For the

convective and diffusive terms a second order upwind

method was used while the SIMPLEC procedure was

introduced for the velocity–pressure coupling. The dis-

cretization grid is uniform in the circumferential direc-

tion and non-uniform in the other two directions. It is

finer near the tube entrance and near the wall where the

velocity and temperature gradients are large. Several

different grid distributions have been tested to ensure

that the calculated results are grid independent. Al-

though none of these tests showed any variation in the

circumferential direction we retained the three dimen-

sional formulation for future applications. The selected

grid consists of 220, 48 and 8 nodes in the axial, radial

and circumferential directions respectively.

The computer code was validated by comparing its

results with velocity and temperature measurements for

laminar developing mixed convection [3] and for fully

developed turbulent mixed convection [20]. As shown in

Fig. 1 the agreement is satisfactory except for the laminar

temperature profile near the tube entrance (Z=Pe ¼
0:01496 or Z=D ¼ 4). However, as explained by the ex-

perimenters [3] the measured temperatures close to the

tube entrance were influenced by upstream conduction

through the tube walls. The numerical predictions of

their laminar model [3] for the temperature profile at

Z=D ffi 4 are very close to the numerical results in Fig. 1.

Furthermore as shown in Fig. 2, the predicted laminar

fully developed velocity and temperature profiles are in

excellent agreement with the corresponding analytical

solution by Hallman [21]. Therefore, the model and the

numerical procedure are reliable and can be used for the

analysis of both laminar and turbulent mixed convection.
3. Results and discussion

Results in this section illustrate the effect of the

Grashof number on the flow characteristics. They have
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Fig. 1. Experimental validation for laminar and turbulent flow conditions.
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been calculated using air as the fluid and L ¼ 101D. The
Prandtl number and the inlet turbulence intensity are

constant at 0.71 and 0.1% respectively while the Rey-

nolds number is equal to 1000 or 1500. The discussion

focuses on the fully developed region whose existence

has been established previously [22,23] by showing that

the velocity profiles, the skin friction coefficient, the

turbulent kinetic energy and the Nusselt number become

independent of the axial position.

Fully developed turbulent kinetic energy profiles for

four representative Grashof numbers are shown in

Fig. 3. In order to put into perspective these values it

should be noted that at the tube inlet k=U 2
0 ¼

1:5� 10�6. For the lowest Grashof number (Gr ¼
7� 105) the fully developed turbulent kinetic energy is

lower than this inlet value at all radial positions and

for both Reynolds numbers. Therefore, for this Gras-

hof number dissipation effects predominate over tur-

bulence generation and the corresponding fully

developed flow fields can be classified as laminar. When

the Grashof number increases to 3· 106, the fully de-

veloped values of the turbulent kinetic energy for

Re ¼ 1500 are considerably higher than its inlet value.

For this Re–Gr combination, turbulence generation in
the entrance region is stronger than dissipation and the

corresponding fully developed flow field is turbulent.

On the other hand, the fully developed flow field for

Re ¼ 1000, Gr ¼ 3� 106 is still laminar. When the

Grashof number increases further to 107 the fully de-

veloped flow field is turbulent for both Reynolds

numbers. The critical value of Gr for transition from

laminar to turbulent conditions is approximately

8· 106 for Re ¼ 1000 and 2· 106 for Re ¼ 1500. These

values are quite close to the results in the Metais and

Eckert chart [11]. Finally, for the highest Grashof

number, Gr ¼ 7� 107, the fully developed flow field is

turbulent for Re ¼ 1500 and laminar for Re ¼ 1000.

This second transition from turbulent to laminar con-

ditions is due to the laminarization effect of the

buoyancy-induced acceleration. Although this transi-

tion is not shown in the Metais and Eckert chart [11],

its existence has been established for intermediate

Reynolds numbers (2000 < Re < 10000) by both ex-

perimental and numerical studies [9,10]. The present

one is the first to report this phenomenon for a Rey-

nolds number less than 2000. The critical value of Gr
for the relaminarization of turbulent flow is approxi-

mately 5 · 107 for Re ¼ 1000 and 108 for Re ¼ 1500.



0.0 0.2 0.4 0.6 0.8 1.0
-0.035

-0.030

-0.025

-0.020

-0.015

-0.010

-0.005

0.000

0.005

0.0 0.2 0.4 0.6 0.8 1.0
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0 0.2 0.4 0.6 0.8 1.0
-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 0.2 0.4 0.6 0.8 1.0
-0.16

-0.14

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

0.02
(T

-T
w
)/

(2
q'

'λ
/D

)

r/R

Hallman[21]
Numerical

Re=1000
Gr=7x107

U
/U

0

r/R

Hallman[21]
Numerical

Re=1000
Gr=7x105

U
/U

0

r/R

Hallman[21]
Numerical

Re=1000
Gr=7x107

(T
-T

w
)/

(2
q'

'
/D

)

r/R

Hallman[21]
Numerical

Re=1000
Gr=7x105

Fig. 2. Analytical validation for laminar fully developed conditions (Re ¼ 1000).
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It should be noted that, when the flow is turbulent for

both Reynolds numbers (Fig. 3c) the non-dimensional

turbulent kinetic energy is higher for the lower Reynolds

number since the effects of natural convection are more

important when the Richardson number is higher.

Furthermore, for turbulent flows the effect of increased

heating on the turbulent kinetic energy is illustrated by

comparing Fig. 3b–d for the case of Re ¼ 1500: they

show that the turbulent kinetic energy increases as Gr
increases. In either case (constant Gr or constant Re) the
turbulent production that causes the difference between

the profiles of Fig. 3 is due to both velocity and tem-

perature gradients (terms Gk and Gb in Eq. (5)) since the

velocity and temperature fields depend on both Gr and

Re (see Figs. 2 and 3).

Fig. 4 shows the fully developed velocity profiles for

the same Re–Gr combinations. In all cases the maximum

velocity does not occur at the tube axis as is the case for

forced convection. This is due to the buoyancy-induced

acceleration, which is more important near the wall

where the fluid is warmer. Since for a given Grashof

number the effect of heating is more important when the

Reynolds number is low, the difference between the

maximum velocity and its value at r ¼ 0 is in general
higher for Re ¼ 1000. The difference between the profiles

corresponding to the same Grashof number is greatest

when the flow field for Re ¼ 1000 is laminar and the one

for Re ¼ 1500 is turbulent (Fig. 4b and d). On the other

hand, for Gr ¼ 107, when both flow fields are turbulent

(Fig. 4c) the difference between the velocity profiles for

Re ¼ 1000 and Re ¼ 1500 is very small. As expected, the

profiles for turbulent conditions are quite uniform and

the velocity is everywhere positive (ascending). On the

other hand, the profiles for laminar conditions are very

distorted and can include zones of flow reversal (nega-

tive velocities) when the heating is intense (Fig. 4b and d

for Re ¼ 1000). As illustrated earlier (Fig. 2), all the

calculated laminar velocity profiles are in excellent

agreement with the analytical solution for fully devel-

oped laminar mixed convection [21]. Two different pat-

terns of flow reversal are illustrated in these figures: the

first one, for Gr ¼ 3� 106, includes the tube axis while

the second, for Gr ¼ 7� 107, occurs between the centr-

eline and the wall. This second flow reversal pattern,

which has been predicted analytically [21], has not been

obtained numerically by any study using the laminar

equations. A detailed discussion of these flow reversal

patterns has been presented elsewhere [18].
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Fig. 3. Kinetic energy of turbulence in the fully developed region (Pr ¼ 0:71, I0 ¼ 0:1%, Z=D ¼ 98).
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Fig. 5 shows the radial distribution of the tempera-

ture increase between the tube inlet and the fully de-

veloped region (Z ¼ 98D). As illustrated earlier (Fig. 3),

all the calculated temperature profiles for laminar

conditions are in agreement with the corresponding

analytical solution by Hallman [21]. With the adopted

non-dimensional formulation, the bulk temperature at

a fixed axial position is inversely proportional to the

Reynolds number and independent of the Grashof num-

ber. These properties of the solution are clearly reflected

in Fig. 5. On the other hand, the radial distribution of

this temperature difference depends on the hydrody-

namic field. Thus, for the lowest Grashof number

(Gr ¼ 7� 105), for which the flow field is laminar for

both Reynolds numbers, radial heat transfer takes place

by conduction only. Therefore, this non-dimensional

temperature at the wall is higher than for the other three

values of Gr while the corresponding centreline tem-

perature is the lowest. In fact, these results show that the

non-dimensional wall temperature decreases monotoni-

cally as Gr increases. On the other hand, the correspond-

ing centreline temperature increases monotonically as Gr
increases. For Gr ¼ 3� 106 the temperature difference

between the wall and the centreline is lower when

Re ¼ 1500 since in that case the flow is turbulent and
radial heat transfer is augmented by fluid mixing. For

Gr ¼ 107, when the flow is turbulent for both Reynolds

numbers, the temperature variation is important near

the wall and quite small in the core region. Finally, for

the highest Grashof number (Gr ¼ 7� 107), the tem-

perature profiles for the two Reynolds numbers are quite

similar. In both cases they consist of a thermal boundary

layer with considerable temperature gradient and an

essentially isothermal core. The reasons for these similar

temperature distributions are however quite different.

For Re ¼ 1500 the flow is turbulent and, therefore, the

core is thoroughly mixed, hence isothermal. On the

other hand, for Re ¼ 1000 the flow is laminar with very

high axial velocity near r ¼ 0:45 (Fig. 4d). Thus, most of

the heat supplied to the fluid is carried downstream and

a very small part is conducted radially towards the axis.

We now examine the distribution of the static pres-

sure in the flow field. This variable is seldom analysed

in mixed convection studies, contrary to the case of

isothermal flow, despite the fact that it is extremely

important for engineering applications and flow char-

acterisation. Fig. 6 shows that its radial variation is

negligible. On the other hand, for the conditions of this

figure (Re ¼ 1000, Gr ¼ 7� 104) the pressure decreases

significantly in the flow direction. The non-dimensional
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axial pressure drop over a tube length of 100 diameters is

approximately 3.9. This is considerably lower than 6.4,

which is the corresponding pressure drop for fully de-

veloped isothermal flow with the same Reynolds num-

ber. The reason for this significant reduction of the

pressure drop (which corresponds to the imposed pres-

sure difference, Dp ¼ p0 � pL) is due to the heating of the

fluid which facilitates its upward movement.

If the Grashof number is increased beyond 7 · 104
while maintaining Re ¼ 1000, the imposed pressure

difference Dp will continue to decrease. Eventually, this

quantity becomes negative; i.e., the static pressure at

the tube outlet becomes higher than the corresponding

value at its inlet. This result, which has been confirmed

experimentally [24] and has also been reported by

Lawrence and Chato [25], is illustrated in Fig. 7 for

both laminar and turbulent conditions. It is due to the

fact that, when Gr increases due to the increase of qw,
the buoyancy-induced upward motion becomes pro-

gressively more significant. Therefore the imposed

pressure difference must eventually be reversed to limit

the mass flow rate to the value corresponding to the

fixed Reynolds number. Thus, for example, the natural

convection flow for Gr ¼ 107 gives rise to a mass flow
rate which corresponds to Re > 1500. In order to re-

duce it to 1500 or 1000, the pressure at the tube outlet

must be higher than at its inlet. In other words, the

imposed pressure difference Dp must be reversed to

compensate for the increasing effect of the buoyancy

force. This change from positive to negative values of

Dp occurs approximately at Gr ¼ 3� 105 for Re ¼ 1000

and at Gr ¼ 4� 105 for Re ¼ 1500. These values and

the results of Fig. 7 are consistent with the fact that

the effects of buoyancy are more important for low

Reynolds numbers. Since in all the cases examined here

the mixed convection flow is upwards, those with

Dp > 0 are flows with aiding pressure difference while

those with Dp < 0 are flows with opposing pressure

difference.

Fig. 8 shows the effect of the Grashof number on the

calculated Nusselt number in the fully developed region.

Fig. 8a and b, respectively for Re ¼ 1000 and Re ¼ 1500,

also identify the conditions for laminar or turbulent

regimes as well as those for positive or negative pressure

differences between the tube inlet and outlet. For lami-

nar condition these figures show that the fully developed

Nusselt number increases slowly with Gr. For Grashof

numbers beyond the first critical value (Gr ¼ 8� 106 for
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Re ¼ 1000 and Gr ¼ 2� 106 for Re ¼ 1500), the fully

developed flow field is turbulent and, as illustrated in

Fig. 5c, the temperature difference between the wall and
the fluid decreases due to mixing. Therefore the Nusselt

number increases more rapidly than for laminar condi-

tions as Gr increases towards the second critical value

corresponding to the relaminarization of flow (Gr ¼
5� 107 for Re ¼ 1000 and Gr ¼ 108 for Re ¼ 1500). For

Grashof numbers higher than the second critical value,

the effects of laminarization cause a decrease of NuM as

reported and discussed in earlier studies [9,10] conducted

with much higher Reynolds numbers.

These effects of Gr and Re on NuM can be expressed

by the following correlation which, as shown in Fig. 8,

represents accurately all the numerical results for

Gr6 5� 107:

NuM ¼ 4:36 1

�
þ Gr0:468

750þ 0:24Re

�
ð11Þ

This correlation is valid for fully developed upward

mixed convection in vertical tubes with uniform wall

heat flux for both laminar and turbulent conditions and

for 10006Re6 1500.

Fig. 9 shows that for laminar flow with opposing

pressure difference (P0 < PLÞ the proposed correlation

(Eq. (11)) agrees well with corresponding experimental
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results [26] and the predictions of the following corre-

lation:

NuM ¼ 0:95ðGr=ReÞ0:28 ð12Þ

which has been proposed [2] for heated ascending lam-

inar mixed convection with 100 < Gr=Re < 10000. On

the other hand, for laminar flow with P0 > PL the dif-

ference between the values predicted from Eqs. (11) and

(12) increases as Gr decreases. Thus, for Re ¼ 1000 and

Gr ¼ 105 the numerical prediction is NuM ¼ 5:43, while
Eqs. (11) and (12) give NuM ¼ 5:38 and NuM ¼ 3:45 re-

spectively. However, all studies of heated ascending

laminar flow in vertical tubes with Re < 2000 indicate

that NuM is larger than the corresponding value for

forced convection [2–5]. Therefore for low values of Gr
our numerical results and the predictions of Eq. (11) are

more plausible than the prediction of Eq. (12). In par-

ticular, Eq. (11) predicts the correct value for NuM as

Gr ! 0. For Grashof numbers beyond the first critical

value, corresponding to laminar–turbulent transition,

the values of NuM predicted by Eq. (12) cannot be

compared with previously published values since, to the

best of our knowledge, these are the first reported results

for turbulent mixed convection with Re < 2000. Corre-

lations such as those by Cotton and Jackson [6], Celata

et al. [7] or Metais and Eckert [11] are based on flows

with higher Reynolds numbers and give very different

results from these in Fig. 8 when applied for the Re–Gr
combination under consideration here.

It should be noted, that for Grashof values higher

than the second critical value, the values of NuM in Fig. 8

cannot be compared with those calculated from Eq. (12)

or from similar laminar correlations [11] since these
correlations have been obtained for much lower heat

fluxes (or, equivalently, Grashof numbers) than the ones

leading to relaminarization.

Finally, Fig. 9 also shows that for the range of pa-

rameters under consideration, NuM increases slightly as

Re decreases. This observation is consistent with the fact

that the effects of a great heat flux are more important

when the flow rate is lower (see, for example, Fig. 3c)

and is in agreement with both Eq. (12) and Hallman�s
experimental results [26].
4. Conclusion

A study of upward mixed convection of air in a long

vertical tube with uniform wall heat flux has been

conducted for two very low Reynolds numbers (Re ¼
1000 and Re ¼ 1500) over a wide range of Grashof

numbers (Gr6 108) using a low Reynolds number k–e
model with proven capabilities of accurately simulating

both laminar and turbulent flows. The results in the

fully developed region define three critical Grashof

numbers for each Reynolds number. The smallest crit-

ical value distinguishes the Re–Gr combinations that

lead to a pressure decrease over the tube length from

those leading to a pressure increase. The middle one

corresponds to transition from laminar to turbulent

conditions while the largest indicates the conditions for

which relaminarization takes place. These three values

are:

• 4 · 105, 8 · 106 and 5· 107 for Re ¼ 1000;

• 3 · 105, 2 · 106 and 108 for Re ¼ 1500.
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A correlation expressing the fully developed Nusselt

number in terms of the Grashof number has been pro-

posed. It is valid for 10006Re6 1500, Gr6 5� 107 and

laminar as well as turbulent flows in this range of

parameters.
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